Insecticides. Part II.t Crystal Structures of 1,1-Bis-(p-chlorophenyl)-2,2,2-trichloroethane (p, p^{\prime}-DDT) and 1-(o-Chlorophenyl)-1-(p-chloro-phenyl)-2,2,2-trichloroethane (o, p^{\prime}-DDT)

By T. P. DeLacy and C. H. L. Kennard, ${ }^{\circ}$ Department of Chemistry, University of Queensland, Brisbane, Queensland 4067, Australia

Abstract

The crystal structure of 1.1-bis-(ρ-chlorophenyl)-2.2.2-trichloroethane. (I). was determined from three-dimensional diffractometer data with 900 reflections. $Z=4$ in the orthorhombic unit cell, space group Fca 2_{1} with dimensions, $a=996 \cdot 3(1) . b=1920 \cdot 0(2)$. and $c=788 \cdot 7(1) \mathrm{pm}$. The structure was refined by least-squares to $R 0.091$. The crystal structure of 1-(o-chlorophenyl)-1-(ρ-chlorophenyl)trichloroethane. (II). was determined from three-dimensional diffractometer data with 2649 reflections by the symbolic addition procedure. $Z=4$ in the triclinic unit cell, space group P1, with dimensions $a=1201 \cdot 6(1), b=1248 \cdot 1(1) . c=1093 \cdot 8(1) \mathrm{pm} . \alpha=$ $105 \cdot 43(3) . \beta=89 \cdot 93(3) . \gamma=109 \cdot 03(3)^{\circ}$. Least-squares refinement was halted at $R 0 \cdot 048$. These two isomers resemble one another. The diameter and projected areas of the two apices and the overall heights are similar but the overall length and distance between the two electronegative centres are not.

Stereochemistry is thought to play a role in the mode of action of DDT. In order to learn more, the crystal structure determinations of two isomers of DDT [(I) p, p^{\prime} - and (II) $\left.o, p^{\prime}-\right]$ have been carried out. A preliminary communication on p, p^{\prime}-DDT has already been made. ${ }^{1}$

Figure 1 The structure of (I) viewed parallel to $\mathrm{C}(13)-\mathrm{C}(14)$

DISCUSSION

The central tetrahedral carbon atom, $\mathrm{C}(13)$ in (I) (Figures 1 and 2) joins the two p-chlorophenyl groups to
in the plane perpendicular to $\mathrm{C}(13)-\mathrm{C}(14)$ results in the phenyl rings lying 'extended ' in the plane, then in the

Figure 2 The structure of (I) viewed perpendicular to $\mathrm{C}(13)-\mathrm{C}(14)$

DDT molecule, the phenyl rings have torsion rotations of 4 [anticlockwise with respect to the $\mathrm{C}(13)-\mathrm{C}(1)$ direction] and 33° [anticlockwise with respect to the $\mathrm{C}(13)-\mathrm{C}(7)$]. If viewed down $\mathrm{C}(13)-\mathrm{C}(14)$, the trichloro-group is rotated slightly away from the staggered configuration

Figure 3 Packing of (I) in a unit cell viewed perpendicular to c
the trihalogenomethyl group. If an ideal 'butterfly' configuration of the molecule is one where the projection
\dagger Part I, T. P. DeLacy and C. H. L. Kennard, preceding paper.
${ }^{1}$ T. P. DeLacy and C. H. L. Lenard, Chem. Comm., 1971, 1208.
with respect to the chlorophenyl groups. Figure 3 shows the packing arrangement about c.

The o, p^{\prime}-isomer of DDT (II) contains two molecules in the asymmetric unit. (Figures 4 and 5). The butterfly configuration is distorted with phenyl rings having

Figure 4 The structure of (II) viewed parallel to $\mathrm{C}(13)-\mathrm{C}(14)$

Figure 5 The structure of (II) viewed perpendicular to $\mathrm{C}(13)-\mathrm{C}(14)$

Figure 6 Packing of (II) in a unit cell viewed perpendicular to a
torsional rotations of $\mathbf{4}$ [clockwise with respect to the $\mathrm{C}(13)-\mathrm{C}(1)$ direction] and 47° [anticlockwise with respect to the $\mathrm{C}(13)-\mathrm{C}(7)]$. The phenyl $\mathrm{Cl}-\mathrm{C}$ bond distances ($\mathbf{1 7 4} \cdot 3$ and $\mathbf{1 7 4} \cdot 1 \mathrm{pm}$) and paraffinic $\mathrm{Cl}-\mathrm{C}$ bonds are longer than usual ($\mathbf{1 7 0} \mathrm{pm}$), with $\mathrm{Cl}(5)-\mathrm{C}(14)(\mathbf{1 7 8 . 7}$

Figure 7 Three plane projections of (I) with the van der Waals circumferences drawn in
$\mathrm{pm})$ being the longest. Van der Waals interactions appear to govern the packing (Figure 6).

Extensive structure activity studies have been carried out on DDT analogues. Rogers et al. ${ }^{2}$ have suggested that the bulky CCl_{3} group inhibits rotation of the phenyl rings and forces them to take up a ' butterfly' configuration in which the planes are coplanar. In
${ }^{2}$ E. F. Rogers, H. D. Brown, I. M. Rasmussen, and R. E. Neal, J. Amer. Chem. Soc., 1953, 75, 2991.
contrast, Riemschneider and Otto ${ }^{3}$ argued that some ability of the phenyl groups to rotate was a requirement for activity.

However, it was postulated that free rotation was required to permit ' almost planar ' configuration. For this reason, the inactivity of $o, 0^{\prime}$-DDT is said to be due

Figure 8 Three plane projections of (II) with the van der Waals circumferences drawn in
to two of the chlorine substituents restricting rotation. But o, p^{\prime}-DDT does have such restriction, yet is a perfectly good insecticide. ${ }^{4}$

Figures 7 and 8 show the three-plane projections of
${ }^{3}$ R. Riemschneider and H. D. Otto, Z. Naturforsch., 1954, 98, 95.
${ }_{4}$ R. L. Metcalf, 'Organic Insecticides,' 1955, Wiley, New York.
${ }_{5}$ C. J. Johnson, ORTEP plotting program.
both isomers. They were obtained from the refined atomic parameters for the molecules, by use of a thermal elipsoid plotting programme ORTEP, ${ }^{5}$ with a scale of one inch to 100 pm , and a view distance of infinity (parallel projection). The van der Waals circumferences of the periphery atoms in each projection were drawn in to scale.

The van der Waals dimensions of the plane projections are: (a) diameters of the apices, 655 (I) and $645 \mathrm{pm}(\mathrm{II})$; (b) projected areas of the trichloromethane groups,

Table 1
(a) Atomic parameters for (I) with estimated standard deviations in parenthesis

Atom	x / a	y / b	z / c
$\mathrm{Cl}(1)$	$-0.1120(6)$	$-0.0395(2)$	$-0.3374(9)$
$\mathrm{Cl}(2)$	$-0.0501(6)$	$0.4880(2)$	$-0.5961(9)$
$\mathrm{Cl}(3)$	$-0.0252(5)$	$0.2097(2)$	$0.2409(8)$
$\mathrm{Cl}(4)$	$0.0537(4)$	$0.3464(2)$	$0.1338(8)$
$\mathrm{Cl}(5)$	$0.1907(3)$	$0.2285(2)$	$0.0004(8)$
$\mathrm{C}(1)$	$-0.0848(9)$	$0.1814(6)$	$-0.1576(16)$
$\mathrm{C}(2)$	$-0.1766(12)$	$0.1363(7)$	$-0.0930(19)$
$\mathrm{C}(3)$	$-0.1873(17)$	$0.0699(7)$	$-0.1494(23)$
$\mathrm{C}(4)$	$-0.1035(14)$	$0.0450(7)$	$-0.2711(266$
$\mathrm{C}(5)$	$-0.0059(15)$	$0.0892(10)$	$-0.3441(29)$
$\mathrm{C}(6)$	$-0.0065(13)$	$0.1601(7)$	$-0.2862(23)$
$\mathrm{C}(7)$	$-0.0653(10)$	$0.3141(6)$	$-0.2140(16)$
$\mathrm{C}(8)$	$0.0552(17)$	$0.3335(7)$	$-0.2875(27)$
$\mathrm{C}(9)$	$0.0621(15)$	$0.3823(9)$	$-0.4123(25)$
$\mathrm{C}(10)$	$-0.0541(19)$	$0.4189(8)$	$-0.4507(26)$
$\mathrm{C}(11)$	$-0.1783(15)$	$0.3999(8)$	$-0.3749(20)$
$\mathrm{C}(12)$	$-0.1824(14)$	$0.3477(5)$	$-0.2578(20)$
$\mathrm{C}(13)$	$0.0313(14)$	$0.2572(7)$	$0.0599(19)$
$\mathrm{C}(14)$	$-0.0728(12)$	$0.2538(6)$	$-0.0798(18)$

(b) Anisotropic thermal parameters $\left(\times 10^{4}\right)^{*}$

Atom	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
$\mathrm{Cl}(1)$	$262(7)$	$18(1)$	$278(10)$	$8(2)$	$-38(7)$	$-12(2)$
$\mathrm{Cl}(2)$	$324(9)$	$22(1)$	$172(7)$	$-15(2)$	$-12(8)$	$14(2)$
$\mathrm{Cl}(3)$	$185(4)$	$29(1)$	$139(6)$	$2(1)$	$-1(4)$	$19(2)$
$\mathrm{C}(4)$	$155(4)$	$25(1)$	$155(6)$	$-9(1)$	$-9(4)$	$-10(1)$
$\mathrm{Cl}(5)$	$101(3)$	$40(1)$	$226(6)$	$13(1)$	$-29(4)$	$-17(1)$
$\mathrm{C}(1)$	$61(9)$	$25(3)$	$102(16)$	$2(4)$	$-11(10)$	$7(17)$
$\mathrm{C}(2)$	$119(14)$	$25(3)$	$111(10)$	$-2(5)$	$44(13)$	$24(7)$
$\mathrm{C}(3)$	$186(20)$	$21(3)$	$168(24)$	$25(6)$	$28(18)$	$2(8)$
$\mathrm{C}(4)$	$86(13)$	$32(4)$	$221(31)$	$15(5)$	$-53(19)$	$4(10)$
$\mathrm{C}(5)$	$111(13)$	$50(6)$	$196(29)$	$15(8)$	$-23(17)$	$-23(13)$
$\mathrm{C}(6)$	$118(15)$	$29(4)$	$141(29)$	$1(6)$	$25(18)$	$-6(9)$
$\mathrm{C}(7)$	$92(10)$	$25(3)$	$90(17)$	$-16(6)$	$28(11)$	$-3(6)$
$\mathrm{C}(8)$	$190(19)$	$18(3)$	$209(30)$	$-13(7)$	$26(22)$	$-16(9)$
$\mathrm{C}(9)$	$129(17)$	$40(5)$	$180(32)$	$-10(7)$	$6(18)$	$-6(12)$
$\mathrm{C}(10)$	$199(24)$	$29(4)$	$126(27)$	$-16(8)$	$32(18)$	$-17(8)$
$\mathrm{C}(11)$	$163(16)$	$31(4)$	$107(24)$	$17(6)$	$-57(17)$	$-27(8)$
$\mathrm{C}(12)$	$148(16)$	$15(3)$	$133(22)$	$2(4)$	$-1(16)$	$11(7)$
$\mathrm{C}(13)$	$144(17)$	$23(3)$	$121(22)$	$1(6)$	$-9(16)$	$-3(7)$
$\mathrm{C}(14)$	$102(13)$	$18(3)$	$117(20)$	$-13(4)$	$25(12)$	$-12(7)$

(c) Interatomic distances (pm); estimated standard deviation $\mathrm{Cl}-\mathrm{C} 1 \cdot 5, \mathrm{C}-\mathrm{C} 3 \mathrm{pm}$

$\mathrm{Cl}(1)-\mathrm{C}(4)$	170	$\mathrm{Cl}(2)-\mathrm{C}(10)$	175
$\mathrm{Cl}(3)-\mathrm{C}(13)$	178	$\mathrm{Cl}(4)-\mathrm{C}(13)$	181
$\mathrm{Cl}(5)-\mathrm{C}(13)$	174		
$\mathrm{C}(1)-\mathrm{C}(2)$	135	$\mathrm{C}(7)-\mathrm{C}(8)$	138
$\mathrm{C}(2)-\mathrm{C}(3)$	135	$\mathrm{C}(8)-\mathrm{C}(9)$	136
$\mathrm{C}(3)-\mathrm{C}(4)$	136	$\mathrm{C}(9)-\mathrm{C}(10)$	138
$\mathrm{C}(4)-\mathrm{C}(5)$	141	$\mathrm{C}(10)-\mathrm{C}(11)$	142
$\mathrm{C}(5)-\mathrm{C}(6)$	143	$\mathrm{C}(11)-\mathrm{C}(12)$	136
$\mathrm{C}(1)-\mathrm{C}(6)$	134	$\mathrm{C}(7)-\mathrm{C}(12)$	137
$\mathrm{C}(13)-\mathrm{C}(14)$	151	$\mathrm{C}(7)-\mathrm{C}(14)$	157
$\mathrm{C}(1)-\mathrm{C}(14)$	152		

* Defined as $T=\exp -\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+\right.$ $\left.2 \beta_{23} k l+2 \beta_{19} h l\right)$.

Table 1 (Continued)
(d) Interatomic angles (deg.): estimated standard deviation 1°

$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	118.8	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)$	$120 \cdot 1$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(14)$	118.7	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(14)$	121.5
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(14)$	122.5	$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(14)$	118.3
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	121.8	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	122.2
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	121.0	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$117 \cdot 7$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	120.0	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$120 \cdot 2$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Cl}(1)$	121.4	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{Cl}(2)$	120.5
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{Cl}(1)$	118.6	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{Cl}(2)$	119.4
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$115 \cdot 8$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$120 \cdot 0$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$122 \cdot 1$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$	119.3
$\mathrm{C}(1)-\mathrm{C}(14)-\mathrm{C}(7)$	113.6	$\mathrm{Cl}(5)-\mathrm{C}(13)-\mathrm{Cl}(4)$	105.8
$\mathrm{C}(1)-\mathrm{C}(14)-\mathrm{C}(13)$	$112 \cdot 8$	$\mathrm{Cl}(5)-\mathrm{C}(13)-\mathrm{Cl}(3)$	110.0
$\mathrm{C}(7)-\mathrm{C}(14)-\mathrm{C}(13)$	115.4	$\mathrm{Cl}(5)-\mathrm{C}(13)-\mathrm{C}(14)$	114.2
$\mathrm{Cl}(3)-\mathrm{C}(13)-\mathrm{C}(14)$	110.4	$\mathrm{Cl}(4)-\mathrm{C}(13)-\mathrm{Cl}(3)$	$105 \cdot 0$
		$\mathrm{Cl}(4)-\mathrm{C}(13)-\mathrm{C}(14)$	111.0

0.296 and $0.283 \mathrm{~nm}^{2}$; (c) heights of the projections (x and $\left.y^{\prime}\right), 870$ and 880 pm ; (d) lengths of the projections (x and $z), 1400$ and 1240 pm ; and (e) distance between two electro-negative chlorine atoms 1040 and 710 pm .

This means that the diameter and projected areas of the two apices and the overall heights of the two isomers are within experimental error but the overall lengths and distance between the two electronegative centres are not.

EXPERIMENTAL

1,1-Bis-(p-chlorophenyl)-2,2,2-trichloroethane, (I)
Crystal I)ata. $-\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{5}, M=345 \cdot 5$. Orthorhombic, $a=$ $996.3(1) b=1920 \cdot 0(2), c=788.7(1) \mathrm{pm} *, U=1.509 \mathrm{~nm}^{3}$, $D_{\mathrm{m}}=1.55$ (flotation), $Z=4 ; \quad D_{\mathrm{c}}=1.56, \quad F(000)=712$. Space group, $P c a 2_{1}\left(C_{2 v}^{5}\right.$ No. 29). Cu- K_{α} radiation $\lambda=$ $154 \cdot 18 \mathrm{~cm} ; \mu\left(\mathrm{Cu}-K_{\alpha}\right)=86.65 \mathrm{~cm}^{-1}$.

A needle-shaped crystal $(0.1 \times 0.1 \times 0.4) \mathrm{mm}$ was mounted with the (001) face perpendicular to the ϕ axis of a Picker four-circle diffractometer. The cell dimensions were derived from seven axial reflections $(0,0,2,0,0,4$, $0,6,0,0,7,0,0,11,0,2,0,0$, and $4,0,0)$. Intensity data were collected up to $2 \theta 127^{\circ}$. A standard reflection, collected every 50 reflections was used to check crystal drift and decomposition, and showed a reduction of 20% over the collection period. 900 out of 1247 independent reflections were considered observed. The measured intensities were corrected for Lorentz and polarization factors, absorption (gaussian integration, grid size $8 \times 8 \times 8$), and crystal decomposition. No corrections were made for extinction.

Structure Determination and Refinement.--The locations

* Previous values: $a=1000, b=1920, c=784 \mathrm{pm},{ }^{6,7}$ and $a=996(4), b=1914(8)$, and $c=785(4) \mathrm{pm} \mathrm{s}^{8,0}$
\dagger See note about Supplementary Publications in Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20
- H. Wild and E. Brandenberger, Helv. Chim. Acta. 1945, 28, 1292
${ }_{7}{ }^{4}$ H. Wild and E. Brandenberger, Helv. Chim. Acta, 1946, 29. 1024.
${ }^{8}$ M. Schncider and I. Fankuchen, J. Amer. Chem. Soc., 1946, 68. 2669.
- I. Fankuchen, M. Schneider and, G. Singer, Science, 1946, 103. 25.
of the chlorine atoms were obtained by solution of a sharpened F^{2} synthesis. Successive electron-density syntheses enabled location of the other chlorines and the carbon atoms. Full-matrix least-squares refinement, with unit weights, reduced R to 0.091 and R^{\prime} to 0.106 (where $R^{\prime}=\left[\Sigma w\left|F_{\mathrm{o}}-F_{\mathrm{c}}\right|^{2} / \Sigma\left|F_{\mathrm{o}}\right|^{2}\right]^{\frac{1}{2}}$). A difference-Fourier synthesis failed to reveal unambiguously the positions of the hydrogen atoms.

Atomic parameters, and interatomic distances and angles are listed in Table 1. Observed and calculated structure amplitudes for both compounds are listed in Supplementary Publication No. SUP 20476 (14 pp., 1 microfiche). \dagger

TAble 2
(a) Atomic parameters for (II) with standard deviations in parentheses

Atom	x / a	y / b	z / c	$B / \AA^{\mathbf{2}}$
$\mathrm{Cl}(11)$	-0.0447(1)	0.2629(1)	$0.5872(1)$	-
$\mathrm{Cl}(12)$	-0.0351(1)	0.8107(1)	$0.7257(1)$	
$\mathrm{Cl}(13)$	$0.3827(1)$	$0.7949(1)$	$0.8325(1)$	
$\mathrm{Cl}(14)$	$0.3318(1)$	$0.9687(1)$	1.0297(1)	
$\mathrm{Cl}(15)$	$0 \cdot 2846(1)$	$0 \cdot 7325$ (1)	1.0511(1)	
C(11)	0.1073(4)	$0 \cdot 6491$ (4)	0.8023(4)	
C(12)	$0.0309(4)$	0.5690 (4)	$0.8573(4)$	
C(13)	-0.0171(4)	0.4490(4)	0.7903(5)	
C(14)	0.0141 (4)	$0 \cdot 4119$ (4)	$0 \cdot 6690$ (5)	
C(15)	0.0889 (4)	$0 \cdot 4895$ (4)	0.6131(4)	
$\mathrm{C}(16)$	$0 \cdot 1339(4)$	0.6085 (4)	$0 \cdot 6803(4)$	
$\mathrm{C}(17)$	0.0641 (4)	$0.8186(3)$	$0.9522(4)$	
C(18)	$0.0632(4)$	$0 \cdot 8380$ (4)	1.0836(5)	
C(19)	-0.0268(5)	$0 \cdot 8695$ (4)	$1 \cdot 1481$ (5)	
$\mathrm{C}(110)$	-0.1164(5)	$0 \cdot 8822(4)$	$1.0825(6)$	
C(111)	-0.1179(4)	$0 \cdot 8643(4)$	$0.9534(6)$	
C(112)	$-0.0280(4)$	$0 \cdot 8327(4)$	$0 \cdot 8892(4)$	
C(113)	0.1560(4)	$0 \cdot 7810$ (3)	0.8729(4)	
C(114)	0.2795(4)	$0 \cdot 8170$ (4)	$0.9439(4)$	
H(12)	0.007	0.592	0.944	$5 \cdot 0$
H(13)	-0.077	$0 \cdot 391$	0.838	$5 \cdot 0$
H(15)	$0 \cdot 104$	0.464	0.534	$5 \cdot 0$
H(16)	$0 \cdot 182$	$0 \cdot 667$	$0 \cdot 646$	$5 \cdot 0$
H(18)	$0 \cdot 124$	0.826	$1 \cdot 129$	$5 \cdot 0$
$\mathrm{H}(19)$	-0.023	$0 \cdot 881$	1.241	$5 \cdot 0$
$\mathrm{H}(110)$	-0.196	0.906	$1 \cdot 128$	$5 \cdot 0$
H(111)	-0.174	0.872	0.908	$5 \cdot 0$
H(113)	$0 \cdot 176$	0.821	0.805	$5 \cdot 0$
$\mathrm{Cl}(21)$	$0 \cdot 2981$ (1)	0.4630(1)	1.0844(1)	*
$\mathrm{Cl}(22)$	$0 \cdot 6558(1)$	$0 \cdot 3405(1)$	0.5890(1)	
$\mathrm{Cl}(23)$	$0 \cdot 3204(1)$	-0.0249(1)	0.6387(1)	
$\mathrm{Cl}(24)$	$0 \cdot 3399(1)$	$-0.0152(1)$	$0 \cdot 3806$	
$\mathrm{Cl}(25)$	0.1597(1)	$0 \cdot 0525$ (1)	0.5219(1)	
C(21)	$0 \cdot 3733(4)$	0.2542(4)	0.7075 (4)	
$\mathrm{C}(22)$	0.2977(4)	0.3187(4)	$0.7128(4)$	
C(23)	$0 \cdot 2761$ (4)	$0 \cdot 3837(4)$	$0 \cdot 8281$ (5)	
$\mathrm{C}(24)$	$0 \cdot 3290$ (4)	$0 \cdot 3843$ (4)	0.9383 (4)	
C(25)	$0 \cdot 4051$ (4)	$0 \cdot 3225(4)$	$0.9370(5)$	
$\mathrm{C}(26)$	0.4270(4)	$0 \cdot 2570$ (4)	0.8220(5)	
C(27)	$0 \cdot 4267(4)$	$0 \cdot 2559$ (4)	$0 \cdot 4862(4)$	
$\mathrm{C}(28)$	0.3416(4)	$0 \cdot 2580$ (4)	$0 \cdot 4009$ (5)	
$\mathrm{C}(29)$	$0 \cdot 3678(5)$	$0 \cdot 3287(4)$	$0.3218(5)$	
$\mathrm{C}(210)$	$0 \cdot 4808(5)$	$0 \cdot 4041$ (4)	$0 \cdot 3252(5)$	
$\mathrm{C}(211)$	$0.5686(4)$	0.4062(4)	$0 \cdot 4078(5)$	
C(212)	$0.5396(4)$	$0.3315(4)$	0.4869(4)	
$\mathrm{C}(213)$	$0 \cdot 4011$ (4)	$0 \cdot 1851(4)$	0.5824 (4)	
$\mathrm{C}(214)$	0.3099(4)	$0.0578(4)$	0.5326(4)	
H(22)	$0 \cdot 266$	$0 \cdot 324$	0.640	$5 \cdot 0$
H(23)	0.222	$0 \cdot 431$	0.831	$5 \cdot 0$
$\mathrm{H}(25)$	0.422	0.326	1.017	$5 \cdot 0$
$\mathrm{H}(26)$	0.485	0.214	0.826	$5 \cdot 0$
$\mathrm{H}(28)$	0.261	$0 \cdot 202$	0.397	$5 \cdot 0$
$\mathrm{H}(29)$	0.296	$0 \cdot 321$	0.263	$5 \cdot 0$
$\mathrm{H}(210)$	0.506	$0 \cdot 462$	0.270	$5 \cdot 0$
$\mathrm{H}(211)$	$0 \cdot 660$	$0 \cdot 462$	0.413	$5 \cdot 0$
$\mathrm{H}(213)$	0.472	0.160	0.593	$5 \cdot 0$

Table 2 (Continued)
(b) Anisotropic thermal parameters $\left(\times 10^{4}\right)^{*}$

tom	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
$\mathrm{Cl}(11)$	149(2)	68(1)	122(2)	18(1)	-15(1)	-4(1)
$\mathrm{Cl}(12)$	108(1)	124(2)	101(2)	58(1)	-13(1)	17(1)
$\mathrm{Cl}(13)$	65(1)	117(1)	149(2)	33(1)	20(1)	-10(1)
$\mathrm{Cl}(14)$	83(1)	77(1)	140(2)	17(1)	1(1)	-12(1)
$\mathrm{Cl}(15)$	107(1)	127(2)	152(2)	55(1)	-21(1)	$50(1)$
$\mathrm{C}(11)$	56(4)	67(5)	$67(5)$	31(4)	6(4)	11(4)
$\mathrm{C}(12)$	82(5)	75(5)	85(6)	23(4)	20(4)	27(5)
C(13)	96(6)	72(5)	92(6)	21 (4)	7(5)	$23(5)$
C(14)	81(5)	58(5)	104(7)	19(4)	$-17(5)$	14(5)
C(15)	81(5)	$84(6)$	73(5)	30(4)	$-3(4)$	7(5)
$\mathrm{C}(16)$	59(4)	82(5)	90(6)	25(4)	4(4)	26(5)
$\mathrm{C}(17)$	53(5)	53(4)	96(6)	17(3)	9(4)	19(4)
$\mathrm{C}(18)$	89(6)	81 (5)	93(6)	37(4)	21(5)	28(5)
$\mathrm{C}(19)$	113(6)	$81(5)$	108(7)	23(4)	36(6)	$25(5)$
$\mathrm{C}(110)$	87(6)	60(5)	154(9)	25(4)	41(6)	15(5)
$\mathrm{C}(111)$	63(5)	69(5)	157(8)	23(4)	6(5)	15(5)
$\mathrm{C}(112)$	66(5)	57(4)	88(6)	16(4)	6(4)	14(4)
C(113)	54(4)	61(4)	83(5)	21(3)	3(4)	18(4)
$\mathrm{C}(114)$	70(5)	69(5)	100(6)	25(4)	8(4)	14(4)
$\mathrm{Cl}(21)$	167(2)	101(1)	93(2)	57(1)	23(1)	$25(1)$
$\mathrm{Cl}(22)$	72(1)	125(2)	133(2)	29(1)	3(1)	40(1)
$\mathrm{Cl}(23)$	147(2)	88(1)	146(2)	38(1)	21 (1)	$52(1)$
$\mathrm{Cl}(24)$	146(2)	99(1)	113(2)	43(1)	28(1)	5(1)
$\mathrm{Cl}(25)$	77(1)	91(1)	142(2)	$11(1)$	8(1)	23(1)
C(21)	64(5)	72(5)	86(6)	18(4)	3(4)	$30(4)$
$\mathrm{C}(22)$	91(5)	78(5)	76(6)	24(4)	3(4)	$35(4)$
$\mathrm{C}(23)$	95(6)	91 (6)	86(6)	33(4)	$-1(5)$	33(5)
$\mathrm{C}(24)$	93(6)	67(5)	85(7)	21(4)	15(5)	16(4)
C(25)	96(6)	94(6)	93(7)	27(5)	-11(5)	23(5)
$\mathrm{C}(26)$	85(5)	99(6)	100(7)	42(4)	$-1(5)$	27(5)
C(27)	66(5)	73(5)	79(6)	17(4)	7(4)	22(4)
C(28)	83(5)	99(6)	97(6)	12(4)	$-0(5)$	36(5)
$\mathrm{C}(29)$	102(6)	85(5)	97(6)	$11(5)$	-6(5)	33(5)
$\mathrm{C}(210)$	130(7)	82(5)	78(6)	33(5)	22(5)	17(5)
C (211)	91 (5)	75 (5)	75(6)	31(4)	31(5)	6(4)
$\mathrm{C}(212)$	65(5)	83(5)	$62(5)$	33(4)	6(4)	$2(4)$
C(213)	69(5)	74(5)	88(6)	22(4)	3(4)	$22(4)$
C(214)	104(6)	87(5)	92(6)	37(4)	25(5)	32(4)

- Defined as for Table 1.
(c) Interatomic distances (pm) ; estimated standard deviations, $\mathrm{C}-\mathrm{Cl} 0.5, \mathrm{C}-\mathrm{C} 0.8, \mathrm{C}-\mathrm{H} 8 \mathrm{pm}$

	Molecule (1)	Molecule (2)
$\mathrm{Cl}(1)-\mathrm{C}(4)$	173.7	175.0
$\mathrm{Cl}(2)-\mathrm{C}(12)$	173.4	174.8
$\mathrm{Cl}(3)-\mathrm{C}(14)$	177.4	177.4
$\mathrm{Cl}(4)-\mathrm{C}(14)$	$177 \cdot 1$	$177 \cdot 1$
$\mathrm{Cl}(5)-\mathrm{C}(14)$	178.7	178.7
$\mathrm{C}(1)-\mathrm{C}(2)$	138.8	138.9
$\mathrm{C}(2)-\mathrm{C}(3)$	$140 \cdot 1$	138.2
$\mathrm{C}(3)-\mathrm{C}(4)$	138.0	135.9
$\mathrm{C}(4)-\mathrm{C}(5)$	136.7	$137 \cdot 3$
$\mathrm{C}(5)-\mathrm{C}(6)$	$139 \cdot 1$	138.2
$\mathrm{C}(6)-\mathrm{C}(1)$	137.3	139.5
$\mathrm{C}(7)-\mathrm{C}(8)$	$139 \cdot 3$	139.4
$\mathrm{C}(8)-\mathrm{C}(9)$	$139 \cdot 8$	136.1
$\mathrm{C}(9)-\mathrm{C}(10)$	$136 \cdot 8$	137.1
$\mathrm{C}(10)-\mathrm{C}(11)$	136.9	137.7
$\mathrm{C}(11)-\mathrm{C}(12)$	$139 \cdot 4$	139.1
$\mathrm{C}(12)-\mathrm{C}(7)$	138.6	137.8
$\mathrm{C}(13)-\mathrm{C}(1)$	153.1	151.3
$\mathrm{C}(13)-\mathrm{C}(7)$	152.2	151.8
$\mathrm{C}(13)-\mathrm{C}(14)$	154.4	155.7
$\mathrm{H}(2)-\mathrm{C}(2)$	99	91
$\mathrm{H}(3)-\mathrm{C}(3)$	107	100
$\mathrm{H}(5)-\mathrm{C}(5)$	88	96
$\mathrm{H}(6)-\mathrm{C}(6)$	93	102
$\mathrm{H}(8)-\mathrm{C}(8)$	96	99
$\underset{\mathrm{H}(10)-\mathrm{C}(10)}{\mathrm{H}(9)-\mathrm{C}(9)}$	98 116	104
H(11)-C(11)	88	108
$\mathrm{H}(13)-\mathrm{C}(13)$	99	101

Table 2 (Continued)
(d) Interatomic angles (deg.); estimated standard deviation $0 \cdot 4^{\circ}$, angles involving H atoms, 5°

	Molecule (1)	Molecule (2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	118.6	118.0
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(13)$	121.0	122.1
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(13)$	120.3	119.9
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$120 \cdot 8$	121.0
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	123	121
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	116	118
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	118.6	119.6
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	117	121
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	124	120
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	121.5	$121 \cdot 1$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Cl}(1)$	118.4	119.6
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{Cl}(1)$	$120 \cdot 2$	119.3
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	119.0	119.6
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	119	119
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	122	122
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	121.5	120.6
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	123	117
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{H}(6)$	115	123
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)$	116.8	115.4
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(13)$	$125 \cdot 3$	124.8
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(13)$	117.9	119.6
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$121 \cdot 3$	122.7
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	118	116
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	120	121
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$120 \cdot 2$	120.5
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	118	115
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	122	125
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	119.9	119.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	125	124
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	115	116
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	119.8	118.8
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	123	123
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	118	118
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$	122.0	123.2
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{Cl}(2)$	117.6	115.9
$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{Cl}(2)$	120.4	$120 \cdot 9$
$\mathrm{C}(1)-\mathrm{C}(13)-\mathrm{C}(7)$	110.7	111.7
$\mathrm{C}(1)-\mathrm{C}(13)-\mathrm{C}(14)$	$112 \cdot 2$	112.7
$\mathrm{C}(7)-\mathrm{C}(13)-\mathrm{C}(14)$	115.7	$115 \cdot 3$
$\mathrm{C}(1)-\mathrm{C}(13)-\mathrm{H}(13)$	105	113
$\mathrm{C}(7)-\mathrm{C}(13)-\mathrm{H}(13)$	112	108
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	101	96
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{Cl}(5)$	113.7	113.9
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{Cl}(4)$	111.4	$110 \cdot 9$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{Cl}(3)$	109.8	109.2
$\mathrm{Cl}(5)-\mathrm{C}(14)-\mathrm{Cl}(4)$	108.9	108.1
$\mathrm{Cl}(5)-\mathrm{C}(14)-\mathrm{Cl}(3)$	106.2	106.7
$\mathrm{Cl}(4)-\mathrm{C}(14)-\mathrm{Cl}(3)$	106.9	107.8

1-(o-Chlorophenyl)-1-(p-chlorophenyl)-2,2,2-trichlorocthane,

(II)

This isomer was separated from technical-grade DDT by repeated recrystallization from light petroleum and methyl alcohol.

Crystal Data. $-\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Cl}_{5}, \quad M=354 \cdot 5$. Triclinic, $a=$ 1201.6(1), $b=1248 \cdot 1(1), c=1093.8(1) \mathrm{pm}, \alpha=105 \cdot 43(3)$, $\beta=89.93(3), \quad \gamma=109.03(3)^{\circ} \dagger, \quad U=1.460 \mathrm{~nm}^{3}, \quad D_{\mathrm{m}}=$
\dagger Previous values: $a=2580, b=1520, c=1955 \mathrm{pm}, \alpha=$ $104 \cdot 15^{\circ}, \beta=95.40^{\circ}, \gamma=99 \cdot 38^{\circ} .10$
${ }^{10}$ H. Wild and E. Brandenberger, Helv. Chim. Acta, 1946. 29, 1035.
$1.61, Z=4, D_{\mathrm{c}}=1.59, F(000)=712$. Space group $P \bar{I}$ (C_{i}, No. 2). Mo- K_{α} radiation, $\lambda=71 \cdot 07 \mathrm{pm} ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=$ $9.4 \mathrm{~cm}^{-1}$.
A plate-shaped crystal $(0.3 \times 0.2 \times 0.05) \mathrm{mm}$ was mounted in a general orientation on a Hilger and Watts four-circle diffractometcr. 2649 out of 3600 independent reflections were collected up to 2044°. No change in the intensity of the standard reflections was observed during data collection. The measured intensities were corrected for Lorentz and polarization factors, and for X-ray absorption (gaussian integration, grid size of $4 \times 4 \times 4$).

Structure Determination.-The structure was solved by the symbolic addition phase-determining technique using the largest $287 E$ values. Ten chlorine atoms were located from an initial E map calculated with 287 phased E values. Successive electron-density syntheses ennabled location of all the 28 carbons. Block-diagonal approximation and full-matrix least-squares refinement reduced R to 0.048 and R^{\prime} to 0.044 . All hydrogen atoms were located. Although the least squares had not converged, refinement was halted

11 ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962, p. 201.
${ }_{12}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.
at this stage. A final difference-Fourier failed to reveal any unaccounted electron density. A plot of $I_{\mathrm{c}} / I_{\mathrm{o}}$ vs. I_{o} indicated that three low-angle high-intensity reflections were seriously effected by extinction. They were removed before the last cycle of refinement.

Atomic parameters and interatomic distances and angles are listed in Table 2.
The scattering factors used were those for chlorine, carbon, ${ }^{11}$ and hydrogen. ${ }^{12}$ No corrections were applied for anomalous dispersion. All calculations were carried out with local versions of standard programmes. ${ }^{13}$

We thank ICIANZ Ltd. for a sample of technical DDT, Dr. A. McL. Matheison and Professor B. Penfold for the use of four-circle diffractometers, the University of Queensland and the Australian Research Grant Committee for financial support of this work, and Professor L. Sacconi for use of an IBM 1130.
[2/988 Received, 3rd May, 1972]
${ }^{13}$ FAME-MAGIC (Symbolic Addition), Dewar and Stonc, modified by R. C. Secombe, 1970; PREFOUR (Structure factor), FOURIER, J. Blount, 1966; ORFLS (Full-matrix least-squares), W. R. Busing, K. O. Martin, and H. A. Levy, 1964; DIGLS (Diagonal least-squares) for IBM 1130.

